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Abstract: The paper is devoted to two real problems that generate a cooperative game model with 
a so-called k-convex characteristic function when certain conditions are fulfilled. Both a bankruptcy 
problem and an information trading problem are modelled as a cooperative game by constructing 
the corresponding bankruptcy game as well as the information market game. Firstly, it is established 
that the bankruptcy game is a k-convex n-person game where 1 < k < n - 2 if and only if the estate 
is sufficient to meet the claims of creditors in any (n - k)-person coalition. Secondly, it is shown that 
the k-convexity property for the information market game is equivalent to the nonexistence of profits 
with respect to a restricted class of submarkets. 
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1 Introduction 

Shapley (1971) started the study of the not ion of convexity for cooperat ive games 
in characteristic function form. A cooperat ive game is called a convex game if its 
characteristic function is a supermodular  function on the set of  all coalitions 
(subsets of a given player set). Shortly, the supermodular i ty  of  a real-valued 
set-function means that  the incentives of an arbitrarily fixed coalit ion for joining 
another  disjoint coalition don ' t  decrease as the coalition grows: the so-called 
"snowball ing" or "bandwagon"  effect. 

The application of  game theoretic analysis to a variety of real problems has 
resulted in the discovery of at least three problems that  generate a cooperat ive 
game model  with a supermodular  characteristic function. First of all, Littlechild 
and Owen (1973) treated the problem of setting airport  landing charges for 
different types of  aircraft. Their game theoretic approach  to the airport  cost 
al location problem is based on the construct ion of the characteristic cost func- 
tion of the so-called airport  cost game. Secondly, Topkis  (1983) considered the 
problem of selecting from the set of  available activities a subset of  public and 
private activities that  is optimal with respect to a specific net return function. 
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Topkis formulated the activity selection problem as a game theoretic problem 
by interpreting the maximum net return function as the characteristic function 
of the so-called activity selection game. Thirdly, O'Neill (1982) paid attention to 
the division problem of the entire estate of a deceased person among a number 
of creditors. O'Neill started the game theoretic approach to the bankruptcy 
problem by constructing the characteristic function of the so-called bankruptcy 
game. The airport cost allocation problem, the activity selection problem as well 
as the bankruptcy problem are modelled as a cooperative game where the 
associated characteristic function is supermodular. In other words, the induced 
airport savings game, the activity selection game and the bankruptcy game, all 
of them are convex games. 

In the eighties and in the beginning of the nineties several generalizations of 
the notion of convexity for cooperative games have been proposed. For instance, 
Granot and Huberman (1982) introduced the notion of permutational convexity 
as an adjunct to their study of the problem of cost allocation among users of a 
minimum cost spanning tree network. In addition, Sharkey (1982) defined the 
notion of subconvexity. Both Sprumont (1990) and Ifiarra and Usategui (1993) 
introduced, independently of each other, the same notion of average convexity. 
All three notions can be regarded as refinements in the sense that any convex 
game is permutationally convex, subconvex, and average convex. 

Driessen (1986a, b) introduced the notion of k-convexity as another type of 
modification of the notion of convexity. For an arbitrary natural number k, an 
n-person game is said to be k-convex if a specifically induced cover game is a 
convex n-person game. In case k = n, then the induced game coincides with the 
original game and as such, the notion of n-convexity agrees with the notion of 
convexity. An extensive treatment of the game theory part involving k-convexity 
can be found in Driessen (1988, Chapter VII). From the game theoretic view- 
point, the k-convexity of a game suffices to obtain interesting properties for 
solutions of the game involved (particularly, the core and, to a less extent, the 
z-value and nucleolus). 

Up to the present there exists almost no literature on k-convex n-person 
games which arise from a real problem. The purpose of the paper is to present a 
first attempt to provide literature on k-convex n-person games of that kind. 
Section 3 (4 respectively) deals with the study of the k-convexity of the bank- 
ruptcy (information market) game which arises from the bankruptcy (informa- 
tion trading) problem. Section 2 is devoted to the treatment of the notion of 
k-convexity for cooperative games. 

2 Convexity and k-Convexity of Cooperative Games 

Let N be a finite nonempty set whose elements are called players. Subsets of the 
player set N are called coalitions and let Y denote the set of all coalitions, i.e., 
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JV := {S; S c N}. A cooperative game in characteristic function form (or shortly, 
a game) is a function v: Y ~ ~ such that v (~)  = 0. The real-valued set-function 
v on X is called the characteristic function of the game. The worth v(S) of S ~ X 
in the game v represents the total amount  ofpayoff tha t  the coalition S can attain 
by mutual cooperation between its members. The number of players in the 
coalition S is denoted by I SI. 

We say the game is a convex game if its characteristic function is a super- 
modular  function. To be exact, the game v is said to be convex if the function 
v: .At ~ ~ satisfies one of the following three equivalent conditions (cf. Shapley, 
1971, or Ichiishi, 1981): 

v(S) + v(T) <_ v(S u T) + v(S c~ T) 

v(S w R) - v(S) <_ v (T  w R) - v(T) 

v(S • {i}) - v(S) < v ( T w  {i}) - v(T) 

for all S, T c N (2.1) 

for all R, S, T c  N 

such that S = T c N - R (2.2) 

for all i ~ N and all S, T c N 

such that S c T = N - {i} . (2.3) 

Both the convexity conditions (2.2) and (2.3) express the so-called "snowballing" 
or "bandwagon" effect mentioned in the introduction. In other words, the char- 
acteristic function of a convex game satisfies nondecreasing marginal returns 
with respect to the coalition growth and this property conforms to the "non- 
decreasing returns to scale" associated with convex production functions in 
economics. In the remainder of the section we recall the notion of k-convexity 
for cooperative games. 

Definition 2.1: Let v be a game with player set N consisting of n players. The 
corresponding utopia function u~: N ~ R and gap function 90: JV ~ ~ are given 
by 

uV(i) := v(N) - v(N - {i}) for all i ~ N , (2.4) 

9~(S) := ~ u"(j)  - v(S) for all S ~ N . (2.5) 
j eS  

The utopia payoff uV(i) to player i e N represents the marginal return to player 
i for the formation of the grand coalition N. In the framework of the division of 
the total savings v(N) of the grand coalition among the players, no player should 
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be paid more than his utopia payoff because of the possible threat of the 
formation of any (n - 1)-person coalition. For each coalition S c N, the gap 
g~(S) equals the difference of the total utopia payoff to the coalition and the 
worth of the coalition. It is usually supposed that the gap function is non- 
negative, i.e., g"(S) > 0 for all S = N. Note that g~(~) :=  0. We interpret the 
gap function 9 ~ as a "measure" of the coalitions' discontentedness caused by 
the utopia function uL Here the discontentedness of any coalition is always 
compared with that of the grand coalition. 

The first main idea of the notion of k-convexity is to formulate somehow the 
relative discontentedness of a coalition in terms of the size of the coalition. We 
use a fixed natural number k to divide the coalitions into two types according 
to their size 'with respect to k. The first main idea expresses that coalitions with 
at least k players are at least as discontented as the grand coalition. Since the 
exact numerical data of the most discontented coalitions is considered to be of 
no importance, the game is changed in such a way that the discontentedness of 
coalitions with at least k players is reduced to the level of the discontentedness 
of the grand coalition, while the discontentedness of the remaining coalitions is 
not affected by the change of the game. The second main idea of the notion of 
k-convexity is to require the convexity condition for the induced game. 

Definition 2.2: (cf. Driessen, 1988, pages 173-175). Let k ~ ~J and let v be an 
n-person game with player set N. The corresponding n-person game Vk with 
player set N is given by 

Vk(S ) := v(S) if JS[ < k 

= ~ u " ( j ) - g V ( N ) = v ( N ) -  ~ u~(j) i f l S l > k  . 
j~S  j ~ N - S  

The n-person game v is said to be k-convex if 

(i) g~(S) > gV(N) for all S c N with 1SI > k (2.6) 

tii) the corresponding game Vk is a convex game. 

Let k be an arbitrary natural number. In view of (2.4) and (2.5), we always have 
Vk(N) = v(U), Vk(N -- {i}) = v(U -- {i}) for all i s U and consequently, uVk(i) = 
uV(i) for all i e N as well as gvk(S) = g~(N) if ISI > k, g"~(S) = or(S) if ]SI < k. The 
latter formulas concerning the gap function are the realizations of the first main 
idea of the notion of k-convexity mentioned above Definition 2.2. 

For any k > n - 1, we observe that the two games v and Vk are equal, i.e., 
Vk(S ) = v(S) for all S c N, and in addition, the condition (2.6) is either super- 
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fluous or trivial because of g~ - {i}) = gV(N) for all i e N. Therefore,  for any 
k > n - 1 we conclude that  an n-person game is k-convex if and only if the game 
itself is convex. Especially, the not ion of n-convexity agrees with the not ion of 
convexity. T h r o u g h o u t  the remainder  of  the paper  we suppose that  the natura l  
nu mber  k satisfies 1 < k < n - 2. 

In case a game v is convex, then the supermodular i ty  condit ion (2.3) for the 
characterist ic function v: X ~ ~ yields that  the corresponding gap  function 
g~: J ~  ~ N is a mono ton ic  set-function, i.e., g~ w {i}) > g~ for all i e N and 
all S c N - {i}. In  part icular ,  the grand coali t ion N in a convex game v is the 
mos t  discontented coali t ion because of gV(N) > 9.~(S) for all S c N. Recall tha t  
coalit ions with at least k players in a k-convex n-person game are at  least 
as discontented as the grand coalit ion because of the condit ion (2.6). Thus,  
the equalities gv(S) = g~(N) for all S c N with ISI >- k are necessary for the 
k-convexity of a convex n-person game. In  p repara t ion  for Section 3, we prove  
that  these equalities in the condit ion (2.6) are also sufficient for the k-convexity 
of a convex game. 

The relevant  equalities in (2.6) imply that  for all S c N with ISl _> k 

vk(S)= ~ u~(j)--gO(N) = ~ u~(j)-g'(S)=v(S),  
j eS  j~S 

so the game v k is equal  to the convex game v and  hence, the convex game v itself 
is k-convex. In summary ,  a convex n-person game is k-convex if and only if all 
coalit ions with at least k players are equally discontented in the game, i.e., 

g"(S) = g~ for all S c N with ISl ~ k .  (2.7) 

F r o m  this we derive that  the k-convexity of  a convex n-person game generates 
the m-convexity for all k < m < n - 2. Wi thou t  going into technical details, we 
remark  that  k-convexity and m-convexity where k # m are in general contradic-  
tory  not ions  for an arbi t rary  n-person game (cf. Driessen, 1988, page 181). 
Nevertheless,  it turns out  that  the following three s ta tements  are equivalent. 

1. The n-person game v is k-convex as well as (k + 1)-convex. 
2. v is k-convex and g~ = g~ for all S c N with IS[ = k. 
3. v is (k + 1)-convex and gv(S) = gV(N) for all S c N with ISl = k. 

3 The Bankruptcy Problem and k-Convexity of the Bankruptcy Game 

We consider the bankrup tcy  p rob lem of how to dis tr ibute  the assets of the 
bank rup t  entity a m o n g  individuals according to their claims on it. As a case in 
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point we mention the division problem of the fixed estate of a person who dies, 
leaving a number of fixed debts. The debts are supposed to be mutually inconsis- 
tent in that the estate is insufficient to meet all of the debts (otherwise the division 
problem is solved in such a way that all debts are completely met). 

A bankruptcy problem is an ordered pair (E; d), where E e ~ and d = 

(dl, d2, . . . ,  d,) ~ R" such that di > 0 for all 1 N i N n and 0 < E < ~ dj. The 
j = l  

positive real number E represents the estate and the positive real number d~ is 
the claim of creditor i on the estate. In order to formulate the bankruptcy 
problem as a game theoretic problem, O'Neill (1982) regarded the n creditors as 
players and described the worth of coalition S by taking into account the 
amount what is left of the estate E after each member i of the complementary 
coalition N - S is paid the associated claim d~. To be exact, the worth is equal 
to the remaining part of the estate or zero, whichever is more. 

Definition 3.1: (cf. O'Neill, 1982). Let (E; d) be a bankruptcy problem and let 
N = {1, 2 , . . . ,  n} be the set of the n creditors. The corresponding bankruptcy 
game rE; d with player set N is given by 

vE;d(S):=max[ O ' E -  ~j~N-sdjl for a l l S c N .  (3.1) 

Due to v~;n(N) = E, the game theoretic division problem of the total savings 
v~;d(N) of the grand coalition among the players agrees with the real division 
problem of the estate E among the creditors. It is known that bankruptcy games 
are convex games (cf. Curiel et al., 1987, Theorem 1). Our main goal is to present 
the conditions on the estate and the debts under which bankruptcy games are 
k-convex n-person games. For that purpose, we first treat a characterization of 
the condition (2.7) applied to bankruptcy games. 

Lemma 3.2." Let Vend be the bankruptcy game of (3.1) and let S ~ N be such that 
PSI < n - 2. Then 

g~*,"(S) = g .... (N) iffE>_ ~ d) . 
j e N - S  

Proof." For the sake of notation, we write w instead of rE; d. Due to (2.4) and (3.1), 
the utopia function uW: N ~ • is given by uW(i) = min[E, dl] for all i ~ N. Let 
S c N be such that IS] < n - 2. We mention the following straightforward 
equivalences: gw(S) = gW(N) iff 
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Y', uW(j) = E - max [O, E - ~ dj l  iff 
j e N - S  j ~ N - S  

319 

j ~ N - S  j ~ N - S  

It remains to prove that  (3.2) is equivalent to E > ~ dj. 
j ~ N - S  

(i) If E > ~ d i, then it follows immediately that  E > dj for all j e N - S and 
j ~ N - S  

thus, it is evident that (3.2) holds. 
(ii) In order  to prove the converse statement, suppose that  (3.2) holds. We 

always have IN - SI > 2 and 0 < min[E,  dj] < dj for a l l j  e N. In case there 
would exist i s N - S with E < di, then we would obtain the strict inequali- 
ties E < ~ mini-E, dj] < ~ dj, but  this result is in contradict ion with 

j ~ N - S  j e N - S  

(3.2). Now we conclude that  E > d i for all i e N - S. In view of this, (3.2) 

reduces to }-'jEN_S dJ=  m i n I E '  ~j~N-S dj] and consequently, E > ~ d j .  T h i S j ~ N _ S  

completes the proof  of the lemma. [ ]  

Theorem 3.3: Let k e N, 1 _< k _< n - 2. The bankruptcy  game V~;d of (3.1) is a 
k-convex n-person game if and only if 

E > ~ dj for all S c N with IS} = n - k . (3.3) 
j e S  

Proof: We combine condit ion (2.7) and lemma 3.2 applied to the convex bank- 
ruptcy game Ve;d. As a result, the game VE, d is k-convex if and only if 

E >_ ~ dj for all S c N with k < lSl < n - 2 
j e N - S  

or equivalently, 

E >_ ~ dj for all T c N with 2 <_ l Tl <_ n - k . 
j e T  

Since d i > 0 for all i e N, it suffices to satisfy the last constraints for the (n - k)- 
person coalitions. [ ]  

According to Theorem 3.3, the bankruptcy  game is a k-convex n-person game 
where 1 _< k _< n - 2 if and only if the estate is sufficient to meet the claims of 
creditors in any (n - k)-person coalition. 
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How to exploit the k-convexity property for the bankruptcy game? In general, 
player rs payoff by any core-element of an arbitrary game v is bounded above 
by his utopia payoff uV(i). Involving the bankruptcy game, player i's utopia 
payoff equals the minimum of his claim and the estate and in particular, his 
utopia payoff equals his claim whenever (3.3) holds. Without going into technical 
details, we remark that the k-convexity of the bankruptcy game, where 1 < k < 
n - 2, yields that the claim of all the creditors of any (n - k)-person coalition 
can be met by some core-element of the bankruptcy game, i.e., for all S c N 
with ISI = n - k there exists x ~ Core(rE;d) such that x~ = d i for all i e S. As an 
example, we treat the next problem which has already been studied in the 
Babylonian Talmud (cf. O'Neill, 1982). 

Example 3.4: "Jacob died and each of his four" sons Reuben, Simeon, Levi and 
Judah respectively produced a deed that Jacob willed to him his entire estate, 
half, one third, one quarter of his estate on his death. All deeds bear the same 
date and the total estate is 120 units". 

The corresponding bankruptcy problem with the estate E = 120 and the four 
claims d 1 = 30, d2 = 40, d 3 = 60, d 4 = 120, can be modelled as the 4-person 
bankruptcy game v given by 

v ({1 ,4} )=20 ,  v ( { 1 , 2 , 4 } ) = 6 0 ,  v ( N ) = 1 2 0  , 

v({2, 4}) = 30, v({1, 3, 4}) = 80, v(S) = 0 otherwise . 

v({3,4}) = 50, v({2, 3 , 4 } ) = 9 0  , 

This 4-person bankruptcy game v is convex, but it is neither 1-convex nor 
2-convex. Notice that the related bankruptcy problem with a variable estate E 
and the four fixed claims d 1 = 30, d2 = 40, d 3 = 60,  d4 = 120, gives rise to a 
4-person bankruptcy game which turns out to be 1-convex iff 220 < E < 250 
and further, it is 2-convex iff 180 < E < 250. Finally, we mention that the idea 
of fixed claims and a variable estate plays a prominent part in Aumann and 
Maschler's approach to the bankruptcy problem (cf. Aumann and Maschler, 
1985). 

4 The Information Trading Problem and k-Convexity of the Information 
Market Game 

We consider the information trading problem of how to sell and purchase the 
license rights of a new technology which is indispensable for the production of 
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a new commodity. The information about the new technology is initially owned 
by a unique firm, the so-called patent holder. In the context of cooperative 
behaviour under perfect patent protection, the initially informed firm 1 seeks to 
sell the license rights of the new technology to all or some of the uninformed 
firms 2, 3 . . . .  , n. Let N = { 1, 2 . . . . .  n} be the set of the n firms. The consumer 
market  of the new commodity is supposed to be divided into submarkets on the 
basis of firms which have the right and possibility to enter such a submarket. For 
any coalition T c N, T r ~ ,  let r r ~ ~ represent the nonnegative maximal 
monetary profit obtainable from the production and sale of the new commodity 
in the submarket to which merely the firms in T may enter. For a detailed 
description of the information market  situation in question, we refer to Muto, 
Potters and Tijs (1989). 

The above model of an information market situation generates a cooperative 
n-person game with player set N and its characteristic function is interpreted as 
a profit function. There is no profit for coalitions consisting of uninformed firms 
only. Any coalition S containing the patent holder can attain the profit in each 
submarket to which at least one firm in S has access. 

Definition 4.1: (cf. Muto, Potters and Tijs, 1989). Let N = {1, 2 . . . . .  n} be the set 
of the n firms of which the firm 1 is the patent holder and let {r r s N; T c N, 
T r ~ }  be the collection of nonnegative profits in submarkets. The corre- 
sponding information market  game v with player set N is given by 

:=  Err; r n S e 
T e N  

for all S c N with 1 s S 

= 0 for all S c N - {1} . (4.1) 

Our aim is to present the conditions on the profits in the submarkets under 
which information market  games are k-convex n-person games. The conditions 
involved are closely related to the nonexistence of profits with respect to a 
restricted class of submarkets to which the patent holder may not enter. To be 
exact, the information market  game turns out to be 1-convex if and only if there 
is no profit obtainable from each submarket to which precisely one uninformed 
firm has access. Further, the convexity of the information market  game is valid 
if and only if there is no profit obtainable from each submarket to which at least 
two uninformed firms may enter (excluding the patent holder). Finally, the 
information market  game is a k-convex n-person game where 2 < k < n - 2 if 
and only if there is no profit at all in each submarket  to which the patent holder 
has no access. 

Theorem 4.2: Let v be the information market  game of (4.1). 
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(i) v is a convex n-person game i f fr  T = 0 for all T ~ N - {1} with [TI > 2. 
(ii) v is a 1-convex n-person game iffrii t = 0 for all i e N - {1}. 

(iii) Let k e N, 2 < k < n - 2. Then  v is a k-convex n-person game iff rT = 0 for 
all T c N -  {1}. 

Proof: For  the sake of notat ion,  we write r~ instead of r{~} for all i e N and 
moreover ,  put  r~  := 0. Due  to (2.4), (2.5) and (4.1), the utopia  function u~ N ~ 
and the gap function g~ Y ~ R of the informat ion marke t  game v are given by 

u~ ~ rT, 
T c N  

g~ = j~s~_{,} r i '  

g o ( s ) =  rj + Y 
j~S-{I} T=N 

u (i) = ri 

g~ = Z rj 
j ~ S  

[rT; T c~ S = 25] 

for a l l i e N - { 1 }  , 

for all S c N - { 1 } , 

for a l l S c N w i t h l ~ S  . 

Especially, we observe that  for all S c N with 1 e S 

g~ = 9~ + ~ [rT; Tc~ S = ~ ,  I Yl ~ 2] . (4.2) 
T ~ N  

First  of all, we establish the necessity of the condit ions for the k-convexity of the 
informat ion marke t  game v. 

(i) Suppose that  the game v is convex. As noted in Section 2, the supermodu-  
larity of v yields the monotonic i ty  of gO and in particular,  g~ > g~ 
In view of (4.2) applied to S = {1}, the inequality gV(N) > g~ reduces to 

[rT; T c N - (1}, IT[ > 2-1 < 0 and consequently,  rT = 0 for all T c 
T c N  

N - {1} with ITI-> 2. 
(ii) Suppose that  the game v is 1-convex. By (2.6), the 1-convexity of v implies 

that  gO({i}) > gO(N ) for all i ~ N -  {1} or equivalently, ~ rj < 0 for 
j e N - { 1 , i }  

all i ~ N - {1}. F r o m  this we conclude that  r, = 0 for all i e N - {1}. 
(iii) Suppose that  the game v is k-convex where k e ~ ,  2 < k < n - 2. By (2.6), 

the k-convexity of v implies that  g~ - {1, i}) _> g~ for all i e N - {1} 
or equivalently, r i = 0 for all i ~ N - { 1 }. N o w  it remains to show that  
rr = 0 for all T c  N - {1} with IZl > 2 or equivalently, g~ > gv({1}) 
(the equivalence holds as seen at the end of par t  (i)). As noted beneath  
Definit ion 2.2, we have the equalities gV(N)= g~ g~({1})= g~ 
and in addition, the inequality g~k(N) > g~ holds because of the con- 
vexity of the game v,. I t  follows that  the inequality g~ > gO({ 1 }) holds as 
was to be shown. This completes  the p roof  concerning the necessity of  the 
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conditions for the k-convexity of the game v. Next we prove that the condi- 
tions involved are sufficient for the k-convexity of v. 

(iv) Suppose that either k = 1, ri = 0 for all i �9 N - {1} or 2 < k < n - 2, r r  = 0 
for all T c N - {1}. We obtain uV(1) = v(N), uV(i) = ri = 0 for all i �9 N - 
{1} and gV(N) = 0. Evidently, the condition (2.6) holds since 9~(S) > 0 for all 
S = N. In view of Definition 2.2, it is straightforward to verify that the 
n-person game Vk is given by 

Vk(S) = v(N) for all S ~ N with 1 �9 S 

= 0  for a l i S o N - { 1 }  . 

(v) 

From this we directly conclude that the game v k satisfies the convexity 
condition (2.1) applied to Vk and therefore, the game v is k-convex. 
Suppose t h a t r T = 0 f o r a l l  T c N - { 1 }  with I T ] > 2 .  P u t f l : =  ~ [rr; 

T c N  

IT] _> 2, 1 �9 T]. Now we obtain that 

= y '  

jeS 

= 0  

for all S c N with 1 �9 S 

for a l l S c N - { 1 }  . 

Now it follows immediately that the game v satisfies the convexity condition 
(2.1). 

In summary, we have established that the conditions involved are necessary 
and sufficient for the k-convexity of the information market  game v. This com- 
pletes the proof of the theorem. [] 

Notice that for information market  games, the k-convexity property where 
2 < k < n - 2 agrees with the combination of the convexity and 1-convexity 
properties. The general situation in which k-convexity implies 1-convexity and/or 
convexity is rather extraordinary. Moreover, the combination of the convexity 
and 1-convexity properties can be characterized by a constant gap function (i.e., 
gv(S) = g~(S) > 0 for all S c N, S ~ ~) .  

How to exploit the k-convexity properties for the information market  game? 
It turns out that the core of a k-convex information market  game v where 
1 < k < n - 2 degenerates into a singleton whose unique point (v(N), 0, 0, . . . ,  0) 
equals the z-value and the nucleolus, that is no payoff to uninformed firms. If the 
information market  game v happens to be convex, then it can be shown that both 
the z-value and the nucleolus coincide with the average of the individual worth 
vector (v({1}), 0, 0, . . . ,  0) and the utopia payoff vector (v(N), r{1}, r{2} . . . . .  r{n}), 
that is each uninformed firm receives half of its own individual profit. 
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In this paper we have studied the k-convexity properties for two classes of 
games, namely bankruptcy games and information market games. Concerning 
studies of k-convexity properties for other classes of games, we refer to Driessen 
(1991) which treats the class of clan games, and Driessen (1994). 
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